853 research outputs found

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Detection of Ligation Products of DNA Linkers with 5′-OH Ends by Denaturing PAGE Silver Stain

    Get PDF
    To explore if DNA linkers with 5′-hydroxyl (OH) ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5–1% of linkers A–B and E–F, and 0.13–0.5% of linkers C–D could be joined by T4 DNA ligases. About 0.25–0.77% of linkers A–B and E–F, and 0.06–0.39% of linkers C–D could be joined by E. coli DNA ligases. A 1-base deletion (-G) and a 5-base deletion (-GGAGC) could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025–0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5′-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i) about 0.025–0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3′-OH ends of other linkers; and (ii) the linkers could delete one or more nucleotide(s) at their 5′-ends and thereby generated some 5′-phosphate ends, and then these 5′-phosphate ends could be joined to the 3′-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5′-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    Long term life dissatisfaction and subsequent major depressive disorder and poor mental health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poor mental health, especially due to depression, is one of the main public health problems. Early indicators of poor mental health in general population are needed. This study examined the relationship between long-term life dissatisfaction and subsequent mental health, including major depressive disorder.</p> <p>Method</p> <p>Health questionnaires were sent to a randomly selected population-based sample in 1998 and repeated in 1999 and 2001. In 2005, a clinically studied sub-sample (n = 330) was composed of subjects with (n = 161) or without (n = 169) repeatedly reported adverse mental symptoms at all three previous data collection times. Clinical symptom assessments were performed with several psychometric scales: life satisfaction (<b>LS</b>), depression (<b>HDRS, BDI</b>), hopelessness (<b>HS</b>), mental distress (<b>GHQ</b>), dissociative experiences (<b>DES</b>), and alexithymia (<b>TAS</b>). The long-term life dissatisfaction burden was calculated by summing these life satisfaction scores in 1998, 1999, 2001 and dividing the sum into tertiles. Psychiatric diagnoses were confirmed by SCID-I for DSM-IV in 2005. Logistic regression analyses were performed to assess the studied relationship.</p> <p>Results</p> <p>The previous life dissatisfaction burden associated with adverse socio-demographic, life style and clinical factors. In adjusted logistic regression analyses, it was independently and strongly associated with subsequent major depressive disorder in 2005, even when the concurrent LS score in 2005 was included in the model. Excluding those with reported major depressive disorder in 1999 did not alter this finding.</p> <p>Limitations</p> <p>MDD in 1999 was based on self-reports and not on structured interview and LS data in 2001-2005 was not available.</p> <p>Conclusions</p> <p>The life satisfaction burden is significantly related to major depressive disorder and poor mental health, both in cross-sectional and longitudinal settings.</p

    Retrieval Practice and Study Planning in MOOCs: Exploring Classroom-Based Self-regulated Learning Strategies at Scale

    Get PDF
    Massive Open Online Courses (MOOCs) are successful in delivering educational resources to the masses, however, the current retention rates—well below 10 %—indicate that they fall short in helping their audience become effective MOOC learners. In this paper, we report two MOOC studies we conducted in order to test the effectiveness of pedagogical strategies found to be beneficial in the traditional classroom setting: retrieval practice (i.e. strengthening course knowledge through actively recalling information) and study planning (elaborating on weekly study plans). In contrast to the classroom-based results, we do not confirm our hypothesis, that small changes to the standard MOOC design can teach MOOC learners valuable self-regulated learning strategies.Teaching and Teacher Learning (ICLON

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    A Didactic Model of Macromolecular Crowding Effects on Protein Folding

    Get PDF
    A didactic model is presented to illustrate how the effect of macromolecular crowding on protein folding and association is modeled using current analytical theory and discrete molecular dynamics. While analytical treatments of crowding may consider the effect as a potential of average force acting to compress a polypeptide chain into a compact state, the use of simulations enables the presence of crowding reagents to be treated explicitly. Using an analytically solvable toy model for protein folding, an approximate statistical thermodynamic method is directly compared to simulation in order to gauge the effectiveness of current analytical crowding descriptions. Both methodologies are in quantitative agreement under most conditions, indication that both current theory and simulation methods are capable of recapitulating aspects of protein folding even by utilizing a simplistic protein model
    corecore